Подготовка металла к окрашиванию — удаление следов коррозии и засорений

Подготовка к покраске металла: инструкция по отделке металлических поверхностей, видео и фото

У металла со всеми его прекрасными качествами есть и очень существенный недостаток – коррозия. Повышенная влажность приводит к возникновению ржавчины, способной полностью уничтожить данный материал.

Краска, нанесённая на поверхность, способна предотвратить столь печальный исход и придать конструкции эстетичность. Но, если покраску осуществить без должной подготовки, то процесс не даст желаемого результата.<\p>

Фото стены, поражённой ржавчиной

Поэтому подготовка металлической поверхности под покраску имеет очень большое значение. Способы её проведения мы подробно рассмотрим в этой статье.

Предпосылки

В первую очередь давайте разберёмся с видами ржавчины, которая может уже находиться на железе и подлежит обязательному удалению:

  • Коррозийные пятна. Данный вид ржавчины заполняет собой поверхность, не опускаясь вглубь материала.

На фото образец коррозийного пятна

  • Точечная коррозия. Сверху такое поражение имеет вид маленьких точек. Но в материал оно проходит достаточно далеко, чтобы через некоторое время создать на этом месте сквозные отверстия.

Внешний вид точечной коррозии

  • Сквозная коррозия. Запущенный вариант ржавчины, успевший уже проесть металл насквозь.

Сквозные отверстия, образовавшиеся в результате длительного коррозийного процесса

Вспученная облицовка над подплёночной коррозией

Способы проведения подготовительных работ

Подготовка металлических поверхностей под окраску может осуществляться несколькими методами:

Механическая очистка

Снятие ржавчины своими руками с использованием специальных инструментов наиболее эффективно и имеет наибольшее распространение.

Осуществляться может следующим оборудованием:

  1. Проволочная щётка. Цена такого инструмента низкая, и, следовательно, его использование наиболее экономно. Но и применение его ограничено небольшими очагами коррозии, зачисткой сварных швов и первичной обработкой поверхности. К тому же в процессе выделяется огромное количество металлической пыли.

Использование проволочной щётки для первичной обработки

  1. Шлифовальные диски. Подготовка металла под покраску абразивными инструментами при хорошем качестве расходного материала и наличии специальных навыков может иметь довольно-таки высокое качество. Но также ограничивается небольшими участками заражения.

Снятие ржавчины с использованием шлифовального диска

  1. Пескоструйная установка. Хоть такая аппаратура и достаточно дорогая, зато бомбардировка поражённых коррозией мест частицами песка под высоким давлением позволяет достичь очень высоких результатов, справляясь и с ржавчиной, и с окалиной, и с нагаром, и со слоем старой краски. Её размеры вполне мобильны, а песок для работы подходит обычный речной.

Пескоструйная обработка железной стены

  1. Оборудование гидроабразивной обработки. В этом случае вместо песка под давлением выстреливает смесь воды и абразива. Использование такого устройство возможно только в промышленных условиях на заводе.

Полная ликвидация любого вида коррозии

Химическая очистка

Нанесение химически активных веществ с помощью распылителя

Инструкция применения данного метода заключается в нанесении специальных составов на поражённую ржавчиной поверхность с помощью кисти или пульверизатора для покраски.

Бывают они двух категорий:

  1. Смываемые. Требуют удаления с использованием воды после завершения химической реакции.
  1. Несмываемые. Такие вещества выступают грунт-преобразователями. Полноценной грунтовки они не осуществляют, но зато исключают обязательный контакт с водой. (См. также статью Как сделать грунтовку под шпаклевку.)

Химическая подготовка поверхности металла под покраску осуществляется такими составами:

  • Серной или солярной кислотой с обязательным добавлением ингибиторов коррозии. Растворяет следы ржавчины.
  • Ортофосфорной кислотой. Упрочняет поражённые места.
  • Соединением молочной кислоты и вазелинового масла. Преобразуют продукты коррозии в лактат железа, легко убирающийся ветошью.

Термическая очистка

Путём использования кислородно-ацетиленовой горелки хорошо ликвидируется окалина, но остаётся много ржавчины. Поэтому на сегодняшний день данный метод практически не востребован.

Чем лучше защитить железную поверхность

После того как вы покончили с ржавчиной и нанесли грунтовку следует задуматься об используемой краске.

Хорошо справятся с защитной функцией, например, следующие варианты суспензий:

  • Электропроводная краска Zinga. Создаст тонкоплёночный цинковый слой, прекрасно защищающий сталь от повторного поражения коррозией.
  • Огнезащитные краски по металлу Полистил. Подойдут в случае высокой пожарной опасности здания. В случае возникновения пламени они вспучиваются, предотвращая его дальнейшее распространение.

Вывод

Перед покраской железная поверхность нуждается в качественной подготовке, включающей в себя полное удаление следов коррозии. Осуществить её можно механическими, химическими или термическими способами.

Покраска подготовленной металлической поверхности

Видео в этой статье предоставит вам дополнительные материалы. Тщательная подготовка – залог качественной покраски.

Источник: https://nashaotdelka.ru/vnutrennjaja/okracka/osobennosti/1164-podgotovka-k-pokraske-metalla

Очистка и окраска металла

Металлы — наиболее распространенный вид материалов, защищаемых лакокрасочными покрытиями. В практических условиях приходится сталкиваться с окрашиванием изделий, изготовленных из самых разных металлов. Основной объем окрасочных работ приходится на черные металлы.

Вместе с тем в промышленности и строительстве широкое применение имеют и цветные металлы — алюминий и его сплавы, цинк, медь, медные сплавы, нередко свинец, которые также нуждаются в защите лакокрасочными покрытиями.

В зависимости от вида металла, габаритов изделий, условий их работы применяют соответствующие лакокрасочные материалы и технологию изготовления покрытий.

Технологический процесс включает две основные стадии: подготовку поверхности (очистку металла) и собственно окраску металла. Качество проведения работ на этих стадиях во многом определяет надежность и долговечность покрытий.

Очистка металла от ржавчины и коррозии перед окраской

Подготовка поверхности металлов — одна из важнейших и необходимых операций при окрашивании, она определяет срок службы лакокрасочных покрытий.

Цель подготовки — удаление с поверхности любых загрязнений и наслоений, мешающих непосредственной окраске металла и металлоконструкций.

К ним относятся оксиды (окалина, ржавчина), масляные, жировые и механические загрязнения, имеющиеся на поверхности старые покрытия.

Оксиды — типичный вид загрязнений большинства металлов. Наибольшую опасность с точки зрения коррозии вызывает окалина, представляющая собой смесь оксидных соединений железа: вюстита FeO, магнетита Fe304 и гематита Fe3O2.

Окалина отличается от основного металла повышенной хрупкостью и более высоким значением электродного потенциала.

Ржавчина — гидратированные оксиды железа, ее присутствие приводит к уменьшению адгезии покрытий и может вызвать изменение цвета белых покрытий.

Загрязнения в виде жиров, минеральных масел, консервационных смазок, остатков полировочных паст, абразивов, охлаждающих эмульсий ухудшают условия смачивания поверхности лакокрасочными материалами и отрицательно сказываются на пленкообразовании и свойствах покрытий.

Старые, особенно непрочные, ветхие покрытия служат плохой основой для вновь наносимых покрытий, их также требуется удалять с поверхности. При подготовке поверхности наряду с очисткой металла одновременно проводят ее выравнивание — снятие заусенцев, удаление облоя и литников, сглаживание сварных швов и острых кромок и т. д.

Нередко также выполняют операции по направленному изменению природы поверхности металла (гидрофобизация или гидрофилизация), степени ее шероховатости, а также дополнительной защите металла, например, путем нанесения конверсионных покрытий (фосфатирование, оксидирование, сульфохромирование и др.).

Число подготовительных операций, способы и условия их проведения определяются требованиями ГОСТ 9.402–2004. Они зависят от вида металла, состояния его поверхности, требований к эксплуатационным свойствам покрытий, их назначения. Различают механические, термические и химические способы подготовки поверхности.

Любая подготовка поверхности (очистка металла) связана с удорожанием покрытий, нередко она составляет более половины стоимости всех окрасочных работ, поэтому при выборе того или иного способа наряду с качеством очистки следует учитывать и затраты на ее проведение.

Очистка металлических поверхностей

Механически можно удалять любые загрязнения, однако наиболее часто таким образом производят очистку поверхности металла от ржавчины, окалины, старой краски и других старых покрытий. Применяются следующие способы очистки: шлифование, кварцевание, галтовка, пневмо- и гидроабразивная обработка.

Из механических способов подготовки поверхности особенно распространена струйная абразивная и гидроабразивная обработка: пескоструйная, гидропескоструйная очистка, дробеструйная, дробеметная.

Очистка металла этим способом основана на воздействии частиц абразивов, поступающих с большой скоростью и обладающих в момент соударения с металлом значительной кинетической энергией. Поверхность металла при этом становится шероховатой (углубления достигают 0,04–0,1мм), что улучшает адгезию покрытий.

Однако струйная абразивная обработка приемлема лишь для толстостенных изделий (5 > 3 мм); изделия с более тонкими стенками могут при этом деформироваться. При пескоструйной и гидропескоструйной очистке применяют обычно безглинистый кварцевый песок с размером частиц 0,5–2,5 мм, карбид кремния, плавленый оксид алюминия.

Абразивом при дробеструйном и дробеметном способах обработки служит литая или колотая чугунная или стальная дробь с размером частиц 0,1–2,0 мм или дробь, рубленная из стальной проволоки диаметром 0,3–1,2 мм. Для чистки поверхности черных металлов наиболее целесообразно применять колотую дробь (№ 08–2) с размером частиц не более 0,8 мм.

Эффективность очистки при этом повышается в 1,5–2 раза по сравнению с очисткой литой дробью; стальная рубленая дробь обходится в 3–4 раза дороже колотой. Легкие металлы (алюминий, магниевые сплавы и др.) обрабатывают мягкими абразивами — порошками из сплавов алюминия (иногда с добавлением 5–6% чугунного песка), крошкой фруктовых косточек или скорлупы орехов.

Кварцевый песок — наиболее дешевый абразив. Однако он быстро изнашивается (дробится), образуется мелкая пыль, вредно действующая на здоровье работающих. Поэтому пескоструйная очистка в нашей стране сильно ограничена.

Ее применяют лишь в автоматизированных установках с хорошей герметизацией и вентиляцией, предотвращающими распространение пыли в помещения. В частности, таким способом очищают стальные и чугунные отливки, поковки и другие толстостенные изделия от окалины и нагари.

Обычно песок подается из сопел, отстоящих приблизительно на 200 мм от обрабатываемой поверхности, под давлением 0,3–0,8 МПа.

Металлический песок, в отличие от кварцевого, почти не образует пыли, расход его значительно меньше, а эффективность механического воздействия также достаточно высока. Чистка с помощью металлического песка (дроби) осуществляется в закрытых камерах или кабинах, снабженных приточно-вытяжной вентиляцией.

Применяют различные типы аппаратов для дробеструйной очистки. Распространение получили одно- и двухкамерные аппараты периодического и непрерывного действия типов Г-93А, Г-146, АД-1, АД-2, АД-5, БДУ-Э, ПД-1.

Их производительность по очищаемой поверхности от 1 до 8 м²/ч; дробь распыляется под давлением 0,5- 0,7 МПа.

Дробеметная очистка отличается от дробеструйной тем, что поток дроби создается не сжатым воздухом, а в результате центробежной силы от вращающегося с высокой частотой (2500–3000 об/мин) ротора (турбинного колеса с лопатками).

Дробеметный способ в 5–10 раз производительнее дробеструйного и в несколько раз дешевле. Он обеспечивает минимальную запыленность помещений, однако непригоден для обработки изделий сложной формы.

Недостатком дробеметного способа является также быстрый износ лопаток (срок службы литых чугунных лопаток не превышает 80 ч). При гидроабразивной очистке используется суспензия или взвесь абразива в жидкой среде.

Абразивами в этом случае служат кварцевый песок, гранит, электрокорунд, стекло, молотый шлак и другие твердые порошковые вещества дисперсностью 0,15–0,50 мм, а жидкой средой — вода с добавлением ПАВ и ингибиторов коррозии.

Гидроабразивная очистка проводится с помощью аппаратов нагнетательного и всасывающего типов разных конструкций: ГПА-3, ТО-266, ГК-2, ТВ-210, они подают пульпу под давлением 0,5–0,6 МПа. В аппаратах обычно обрабатывают изделия небольших габаритов.

В случае крупных объектов (суда, гидротехнические сооружения) для очистки поверхности металла нередко используют забортную воду с песком (пульпу), образующуюся при сушке вторичную ржавчину удаляют механическим или химическим путем.

Различают несколько степеней абразивоструйной очистки. Она различается по площади (в %) очищенной до чистого (блестящего) металла:

Sa 1 — легкая очистка до степени порядка 50%; Sa 2 — тщательная очистка (-75%); Sa 2 1/2 — очень тщательная очистка («96%);

Sa 3 — наиболее высокая степень чистоты (~99,2%).

С повышением степени очистки металла резко возрастают затраты на подготовку поверхности. Так, при переходе от Sa 2 к Sa 2 1/2 они удваиваются, а от Sa 2 1/2 к Sa 3 возрастают примерно на 50%.

В зависимости от условий эксплуатации покрытий наиболее часто очистку поверхности проводят до степени Sa 2 или Sa 2 1/2.

В настоящее время значительное внимание привлекает очистка металлических поверхностей под действием струи воды, подаваемой под большим давлением (от 25 до 170 МПа)— гидродинамический способ.

Эффективность чистки поверхности металла зависит от применяемого давления: до 35 МПа удаляются непрочная (шелушащаяся) краска, прилипшая грязь, отложения солей; до 70 МПа — непрочно держащаяся старая краска, ржавчина; до 170 МПа — любые отложения на поверхности, кроме окалины.

Применяемые установки состоят из насоса высокого давления, привода, шлангов, гидравлического пистолета и приборов для регулирования и контроля давления воды.

Такие установки выпускают, в частности, фирмы «Креуле», «Вома» и «Крецле» (Германия), «Кина» (Великобритания) и др. Их отличительная особенность — высокая производительность, отсутствие пыления.

Установки низкого давления особенно удобны для удаления разрушившихся покрытий после их обработки смывками.

Своеобразным способом механической очистки поверхности металлов является ее обработка сухим льдом — гранулами твердой углекислоты с температурой -79 °С. Размер гранул 2–3 мм.

Читайте также:  Вооружение армий ссср и германии накануне войны

Их подают на поверхность с помощью специального аппарата — бластера при давлении воздуха 0,2–1,4 МПа.

При ударе о поверхность гранулы сухого льда частично сублимируются, образующийся газ С02 повышает давление и тем самым усиливает механическое воздействие частиц на поверхность. Для экономии сухого льда предусматривается рекуперация.

Механические способы чистки, особенно струйно-абразивные, наиболее широко применяются при окрашивании стационарных и крупногабаритных объектов (суда, мосты, эстакады, наземные сооружения нефтегазового комплекса, трубы, резервуары, емкости и др.). Это наиболее дорогой вид подготовки поверхности и, как правило, наиболее надежный в отношении долговечности покрытий.

Методы очистки металла

Удаление окалины, ржавчины, коррозии, старой краски, масел и других загрязнений с поверхности можно проводить термическим способом, например путем нагревания изделия пламенем газокислородной горелки (огневая зачистка), электрической дуги (воздушно-электродуговая зачистка) или отжига в печах при наличии окислительной (воздушной) или восстановительной среды. При огневой и воздушно-электродуговой зачистке металл (стальные слитки, слябы, блюмы) быстро нагревают до 1300–1400 °С, при этом загрязненный поверхностный слой сгорает и частично оплавляется. Его механически удаляют, а металл охлаждают.

Отжиг в восстановительной (защитной) атмосфере применяют при подготовке поверхности рулонного металла. Стальной прокат нагревают в атмосфере азотоводородной смеси, содержащей, например, 93% N2 и 7% Н2, до 650–700 °С.

Присутствующие на поверхности следы смазки возгоняются, а оксиды железа восстанавливаются до металлического железа.

Термическое удаление органических загрязнений (старые покрытия, жировые и масляные отложения) удобно проводить в окислительной (воздушной) среде.

Источник: http://obrabotka.ru/articles/ochistka_i_pokraska_metalla.html

Удаление коррозии — бортжурнал Mercedes-Benz C-class без компрессора 2000 года на DRIVE2

Удаление коррозии

Для обеспечения основательной отделки необходимо удалить все следы и очаги ржавчины. Есть несколько способов удаления коррозии, наиболее распространенным является снятие ржавчины шлифмашинкой.

Однако такая обработка сопровождается значительным снижением толщины металла кузова.

Более того, происходит нагрев обрабатываемой зоны, приводящий к нарушению внутренних защитных покрытий и ухудшению состояния металла.

Другие способы более эффективны, менее разрушительны, а следовательно, и более предпочтительны.

К сожалению, в автосервисе редко можно встретить пескоструйный аппарат с повторной циркуляцией. Пескоструйная обработка существует давно, но до последнего времени применялась лишь в промышленности, так как для ее организации требуется отдельное специально приспособленное место.

Пескоструйные установки без повторной циркуляции бомбардируют зачищаемую деталь гранулами (например, частицами песка), которые под давлением воздуха разлетаются во все стороны со всеми вызываемыми этим процессом отрицательными последствиями.

Аппараты с повторной циркуляцией не имеют этого недостатка. Если их применять при меньшей производительности, чем у промышленных аппаратов, то они обеспечат выигрыш за счет облегчения и улучшения условий труда без негативных последствий, а также высококачественное удаление ржавчины.

Частицы песка удаляют ржавчину даже со дна пор, не уменьшая при этом толщину детали кузова.

Суть пескоструйной обработки проста: сопло аппарата направляется на обрабатываемый участок, потом нажимается педаль управления, которая открывает выход песку. Песок под давлением сжатого воздуха очищает поверхность и снова засасывается в аппарат.

Уход за аппаратом заключается в очистке и замене фильтров, которые с течением времени выходят из строя.

Для удаления продуктов коррозии (ржавчины) с поверхности металла также пользуются щетками из стальной проволоки (вручную или с помощью механического привода). Такую обработку нужно делать очень осторожно, так как пораженный коррозией металл хрупок и легко повреждается.

Механическую очистку начинают с удаления ржавчины в легкодоступных местах. Труднодоступные места – зазоры, щели, места соединения деталей и установки болтов – очищают от ржавчины стальными иглами и скребками.

Удаление небольшого пятна ржавчины вручную производят грубой (крупнозернистой) шлифовальной шкуркой. Для облегчения работы и уменьшения пылеобразования можно проводить «мокрую» очистку. Для этого поверхность очищаемого металла смачивают уайт-спиритом или керосином и шлифуют.

При проведении этих работ надо учитывать, что очищенная поверхность металла легко ржавеет, поэтому нельзя оставлять очищенные поверхности без защитного покрытия на длительное время.

Рассмотрим порядок шлифования недеформированной поверхности.

Подчеркнем, что во всех случаях операция шлифования кузова требует очень большого внимания, так как качество исходной поверхности должно быть сохранено.

Если выравнивание поверхности производилось с помощью шпатлевок или грунтов, которыми заделывались мелкие вмятины, то шлифование применяют для улучшения состояния поверхности, а не для создания дефектов.

Чтобы обеспечить высокое качество отделки поверхности, необходимо в первую очередь применять большие подкладки. Если отсутствуют промышленные подкладки, их можно изготовить из достаточно ровной деревянной планки.

Длина подкладки, применяемой для отделки поверхности, достигает 30 см. В отдельных случаях длина подкладки может быть увеличена сообразно условиям выполняемой работы. Ширина подкладки выбирается равной 12 см.

При таких размерах ее удобно удерживать в руках, она обладает хорошей устойчивостью в поперечном направлении и достаточной жесткостью при толщине около 2 см.

Подкладку накрывают листом наждачной бумаги, сложенной пополам по ширине, что придает некоторую упругость, не вызывая повреждения поверхности. На первый лист накладывается второй, которым и осуществляется шлифование.

Шлифуют всегда возвратно-поступательными движениями – «вперед-назад». В процессе обработки необходимо обильно смачивать шлифовальную шкурку водой для промывания зоны обработки и самой шкурки. Как можно чаще надо контролировать состояние поверхности обрабатываемого участка визуально или ладонью, совершая движения, аналогичные шлифованию.

Как показывает практика, этот метод обеспечивает хорошее качество поверхности. В то же время мастер с недостаточным опытом проведения работ по шлифованию может испытать значительные трудности при определении поверхностных дефектов.

Чтобы повысить чувствительность при контроле качества обрабатываемой поверхности, можно одеть перчатку из тонкой ткани на руку или подложить под ладонь руки тонкую ткань и плавно перемещать ладонь вперед-назад, повторяя движения шлифования.

В процессе обработки шлифовальная шкурка забивается шпатлевкой или краской, поэтому ее также необходимо чаще промывать, чтобы устранить сгустки пыли, которые могут создавать на поверхности глубокие риски. Сильно загрязненную шлифовальную шкурку меняют на новую.

Следует помнить, что полиэфирные шпатлевки шлифуются всухую. В большинстве случаев они пористые, поэтому необходимо придерживаться рекомендаций поставщика. После грунтовки и шпатлевки мастер производит общую шлифовку поверхности, загрунтованной под покраску.

Обычно шлифовка производится с водой для устранения пыли и улучшения условий работы. После промывки поверхность необходимо тщательно протереть замшей. Нельзя оставлять капли воды под слоем наносимой краски. В воде содержатся известковые соли, которые выпадают в осадок после испарения воды.

Эти мельчайшие частички соли затем оказываются под слоем краски. С другой стороны, грунты очень часто бывают пористыми. Соли удерживают влагу, которая может просачиваться через пленку поверхностного слоя краски и вызывать вспучивание пленки краски, называемое «волдырь».

Поэтому перед нанесением лака желательно прогреть обрабатываемую поверхность для удаления влаги. Вместо нагрева можно протереть поверхность спиртом, а затем обдуть из пистолета.

Сплошные ребра на панелях, таких как капот или части крыльев и дверей, зашлифовываются с применением направляющей защитной ленты. Для этого достаточно приклеить клейкую ленту по одну из сторон ребра по всей его длине заподлицо с вершиной ребра. Такой способ позволяет соблюсти прямолинейность ребра в процессе шлифования с деревянной или резиновой подкладкой.

Удаление продуктов коррозии с поверхности металла химическими методами называют травлением. Обычно травление проводят, обрабатывая изделия растворами кислот или кислых солей.

Поверхность предварительно обезжиривают, так как наличие остатков смазки и жиров ухудшает смачиваемость поверхности, в результате чего травление протекает неравномерно. Процесс травления состоит из обезжиривания, травления, промывки водой, промывки нейтрализующим составом, промывки водой и сушки.

Существуют разные химические средства, которые используются для травления. Например, фосфорные кислоты растворяют ржавчину до чистого металла. Кислоту наносят на обрабатываемую поверхность кисточкой. Иногда приходится производить обработку несколько раз, каждый раз зачищая обработанное место металлической щеткой. Протравленные участки промывают чистой водой и сразу же просушивают.

Подчеркнем, что, независимо от применяемого для травления раствора, очищенную поверхность металла после травления необходимо обязательно обработать водой и высушить.

Эти операции предотвращают окисление и повторное образование ржавчины. Само собой разумеется, что в процессе обработки деталей кузова кислотой следует защищать открытые участки тела.

Во всех других случаях надо строго следовать рекомендациям производителя препарата.

В магазинах есть готовые к употреблению составы для удаления ржавчины с металлических поверхностей. Приведем состав одного из таких препаратов (в % по массе).

Состав наносят на кузов автомобиля кистью, выдерживают 3–5 мин при температуре 20–25 °C, после чего смывают теплой водой из шланга. Остатки кислоты удаляют нейтрализующим составом, который состоит из 47,5 % этилового спирта, 2,5 % нашатырного спирта и 50 % воды.

Часто используются травильные пасты на основе соляной кислоты. В качестве примера приведем состав одной из них:

Для получения паст сначала растворяют в воде производные целлюлозы, затем добавляют жидкое стекло и бумажную массу. В образовавшуюся суспензию медленно заливают кислоты и формалин, постоянно перемешивая.

Состав наносят на очищаемую поверхность кистью или деревянным шпателем слоем толщиной 1–3 мм и оставляют на ней на 20–40 мин. Периодически поверхность осматривают, для чего снимают пасту в отдельных местах.

Удаляют травильную пасту с поверхности деталей кузова также шпателем. Для окончательной очистки поверхность промывают водой из шланга, после чего на нее наносят пасту-ингибитор, которая выполняет роль пассиватора.

Пассивирующую пасту наносят и удаляют с поверхности так же, как и травильную. Время выдержки ее на поверхности при нормальной температуре – 30 мин.

После удаления пасты-ингибитора поверхность промывают водой, протирают насухо и сразу же грунтуют.

Паста-ингибитор имеет следующий состав (количество ингридиентов приведено в частях от общей массы).

Пасту-ингибитор готовят следующим образом. Калий хромовокислый растворяют в воде, затем к раствору добавляют сульфит-целлюлозный щелок и инфузорную землю. Паста должна быть однородной, вязкотекучей.

Эффективна смешанная очистка ржавчины. Производят ее так: сначала поверхность очищают механическими средствами, а затем остатки ржавчины в порах металла обрабатывают травильными составами.

Удаление продуктов коррозии – одна из наиболее трудоемких операций при подготовке поверхности под окраску. Облегчить ее может использование преобразователей ржавчины, которые позволяют перевести ржавчину в неактивное состояние. Преобразователи ржавчины делятся на две группы.

К первой относят собственно преобразователи, которые только преобразуют продукты коррозии в более стабильные соединения. Ко второй группе относятся грунтовки-преобразователи, т. е.

составы, преобразующие ржавчину и одновременно создающие на поверхности металла пленку, которая является грунтовочным подслоем для последующих слоев защитного покрытия.

В качестве примера составов первой группы может служить модификатор П-1Т-Ц, предназначенный для стабилизации ржавчины под лакокрасочными покрытиями. Его используют для преобразования слоя ржавчины толщиной не более 80 мкм.

Этот преобразователь наносят на ржавую поверхность кистью либо с помощью краскораспылителя. При 18–22 °C состав высыхает за 3 ч. Преобразователь в первоначальном состоянии имеет темно-коричневый цвет, после нанесения на поверхность и высыхания он становится темно-синим.

Заметим, что преобразователи ржавчины не взаимодействуют с окалиной, а максимальная толщина слоя ржавчины, как правило, не должна превышать 80–100 мкм.

Это значит, что если не снять толстые пласты рыхлой ржавчины, то преобразователи проникнут только в наружные слои пораженной поверхности и процесс коррозии будет беспрепятственно развиваться вглубь под слоем преобразованных продуктов.

Важно также строго выдерживать время преобразования, иначе не вступившая в реакцию кислота сама вызовет коррозию.

Указанные недостатки преобразователей в каждом случае надо учитывать.

Торговля предлагает преобразователи ржавчины различных марок. Это продукты взаимодействия фосфорной кислоты с хроматом натрия и окисью цинка. По внешнему виду преобразователи представляют собой прозрачные оранжевые или оранжево-зеленые жидкости. Они негорючи и нетоксичны.

До нанесения преобразователя на поверхность металла ее следует хорошо очистить от грязи и удалить рыхлую ржавчину. Подготовку лучше выполнить металлической щеткой.

Затем поверхность надо обезжирить уайт-спиритом, высушить и через 20–30 мин жесткой кистью нанести преобразователь ржавчины, тщательно его растушевывая и втирая в поверхность.

Через сутки поверхность слегка увлажняют водой, а через 4–6 суток наносят грунтовку.

Преобразователь ржавчины лигнинный – это смесь, состоящая из аминолигнина, фосфорной кислоты, эмульгатора, коагулятора и воды. Внешне представляет собой маслянистую жидкую пасту темно-коричневого цвета с запахом фруктовой эссенции. Этот преобразователь также негорюч и нетоксичен.

Преобразует слой ржавчины толщиной до 150 мкм, легко удерживается на вертикальных и потолочных поверхностях. Лигнинный преобразователь ржавчины можно применять как при положительных, так и при отрицательных температурах.

При комнатной температуре процесс преобразования ржавчины длится 16–20 ч, при 100–110 °C – 15–20 мин.

Допускается нанесение этого преобразователя на влажную поверхность, однако перед нанесением поверхность нужно очистить от грязи, рыхлой ржавчины и обезжирить. Преобразователь можно наносить кистью, валиком и краскораспылителем.

Читайте также:  7 советов по выбору настенных полок: дизайн, виды

После обработки поверхность кузова приобретает цвет от серого до темно-коричневого (цвет зависит от марки стали и характера ржавчины), не имеет вздутий и не шелушится. Обработанную поверхность оставляют на 16–20 ч, после чего грунтуют.

Этот преобразователь превращает ржавчину в водонерастворимые химически стойкие соединения, прочно связанные с поверхностью металла.

Надо учитывать, что стойкость покрытий, нанесенных на поверхность, обработанную тем или другим преобразователем ржавчины, как правило, ниже, чем стойкость покрытий, нанесенных на очищенный от ржавчины без преобразователя металл.

Еще одно замечание: при нанесении преобразователей ржавчины необходимо следить, чтобы они не попадали на поверхности с не удаленным лакокрасочным покрытием, так как содержащаяся в них фосфорная кислота и комплексообразователи, не вступившие в реакцию с окислами металла, снижают адгезию наносимых покрытий.

Источник: https://www.drive2.ru/l/3132856/

Для удаления продуктов коррозии (ржавчины) с поверхности металлов используют механический и химический методы. В первом случае пользуются различным механизированным инструментом или очищают металл вручную стальными щетками, шаберами, шлифовальной шкуркой либо другим абразивным материалом.

Такую обработку нужно делать очень осторожно, так как прокорродировавший металл хрупок и легко повреждается. Механмескую очистку обычно начинают с удаления ржавчины с легкодоступных мест. Труднодоступные участки, зазоры, щели, места соединения деталей сваркой и болтами очищают от ржавчины скребками и стальными иглами.

Снятие ржавчины механическим методом – тяжелый и трудоемкий процесс. Для его облегчения автолюбители придумывают разлинные инструменты. Например, предложен простой способ изготовления приспособления для очистки от ржавчины труднодоступных мест кузова.

С этой целью отрубают кусок стального троса диаметром 10 и длиной 500 мм. Трос вставляют в трубу диаметром 14 и длиной 500 мм так, чтобы с обеих сторон трубы выступило по 25 мм троса, после чего концы трубы зажимают в тисках (рис. 2).

Естественно, что размеры троса и трубы при изготовлении приспособлений описанного типа могут быть самые разные.

Небольшую ржавчину удаляют вручную грубой (крупнозернистой) шлифовальной шкуркой. Для облегчения работы и уменьшения пылеобразования можно проводить “мокрую” очистку.

В этом случае поверхность очищаемого металла нужно смочить уайт-спиритом или керосином, а затем шлифовать, как обычно.

Свежеочищенная поверхность металла легко ржавеет, поэтому не рекомендуется оставлять очищенные поверхности на длительное время без защитного покрытия.

Процесс удаления окислов и гидратов окислов металлов с поверхности металла химическими методами называют травлением. Обычно его проводят, обрабатывая изделия растворами кислот или кислых солей.

Использование химических средств удаления ржавчины значительно облегчает работу. Однако при этом необходимо помнить, что если после обработки препаратами, содержащими кислоту, их остатки недостаточно тщательно удалены, то в дальнейшем они сами могут способствовать развитию коррозии.

Перед травлением поверхность необходимо обезжирить, потому что остатки смазки и жиров ухудшают ее смачиваемость и травление протекает неравномерно. Процесс травления состоит из следующих операций: обезжиривание, обработка кислотосодержащим составом, промывка водой, промывка нейтрализующим составом, промывка водой, сушка.

В магазинах продают готовые к употреблению составы для удаления ржавчины с металлических поверхностей. Наиболее распространен “Автоочиститель ржавчины Омега-1”. Он представляет собой смесь ортофосфорной кислоты, карбокси-м ет ил целлюлозы, аэросила и ингибитора коррозии.

Перед употреблением очиститель необходимо хорошо перемешать, а затем нанести шпателем или кистью слоем 1-3 мм на ржавую поверхность и выдержать на ней 5—30 мин (в зависимости от толщины слоя ржавчины). После этого очиститель удаляют сухой тканью или щеткой и протирают поверхность насухо. Расход очистителя 0,8—1,2 кг на 1м2.

Аналогичными свойствами обладает паста “Морж”.

Рис. 1. Приспособление для очистки металла от ржавчины

Состав наносят на кузов автомобиля кистью, выдерживают 3-5 мин при температуре 20-25 °С, после чего смывают теплой водой га шланга. Остатки кислоты удаляют нейтрализующим составом № 107, состоящим из 47,5% этилового спирта, 2,5% нашатырного спирта и 50% воды.

Широкое распространение получили травильные пасты на основе соляной кислоты.

Для получения паст нужно сначала растворить в воде производные целлюлозы, затем добавить туда жидкое стекло и бумажную массу. В образовавшуюся суспензию при постоянном перемешивании медленно влить кислоты и формалин.

Состав наносят на очищаемую поверхность кистью или деревянным шпателем слоем 1—3 мм и оставляют на ней на 20-40 мин. Периодически поверхность осматривают, для чего в отдельных местах пасту снимают шпателем.

Снимают травильную пасту с поверхности также шпателем, а для окончательной очистки поверхность промывают водой из шланга. После этого на нее наносят пасту-ингибитор, выполняющую роль пассиватора.

Ее наносят и удаляют с поверхности так же, как и травильную пасту. Время выдержки пасты-ингибитора на поверхности при комнатной температуре 30 мин.

После удаления пасты-ингибитора поверхность промывают водой, протирают насухо и сразу же грунтуют.

Паста-ингибитор имеет следующий состав (в массовых частях): калий хромовокислый 9, сульфитцеллюлозный щелок (50%-ный раствор), вода 95, инфузорная земля 80. Приготавливают ее следующим образом. Калий хромовокислый растворяют в воде, затем к раствору при перемешивании добавляют сульфитцеллюлозный щелок и инфузорную землю. Паста должна быть однородной, вязкотекучей.

Наиболее эффективна смешанная очистка ржавчины. Она заключается в том, что сначала поверхность очищают механическими средствами, а затем остатки ржавчины в порах металла обрабатывают травильными составами.

Удаление продуктов коррозии — одна из наиболее трудоемких операций при подготовке поверхности под окраску. Значительно облегчить ее может использование преобразователей ржавчины, которые позволяют перевести ее в неактивное состояние. Преобразователи ржавчины делятся на 2 группы.

К первой относятся собственно преобразователи, которые только преобразуют продукты коррозии в более стабильные соединения. Обычно это водно-спиртовые или водно-ацетоновые растворы фосфорной кислоты с добавлением таннина, гидрохинона, различных ингибиторов коррозии и др.

Их наносят на поверхность, не удаляя предварительно ржавчины, и через 12—24 ч поверхность считается готовой для нанесения грунтовки.

Вторая группа – это грунтовки-преобразователи, т. е. составы, которые не только преобразуют ржавчину, но и образуют на поверхности металла плетку, являющуюся грунтовочным подслоем для последующих слоев защитного покрытия.

Из составов первой группы в продаже чаще всего бывают “Автопреобразователь-1 ржавчины”, “Автопреобразователь ржавчины лигнинный”, “Нейтрализатор ржавчины ВСН-1” и “Буванол”.

Необходимо отметить, что преобразователи ржавчины не взаимодействуют с окалиной, а максимальная толщина слоя ржавчины, как правило, не должна превышать 80-100 мкм.

Поэтому, если не снять предварительно толстые пласты рыхлой ржавчины, то преобразователи проникнут только в наружные слои ржавой поверхности, а процесс коррозии будет беспрепятственно развиваться вглубь уже под слоем преобразованных продуктов.

Кроме того, необходимо строго выдерживать продолжительность преобразования, иначе непро-реагировавшая кислота сама станет источником коррозии.

Типичным представителем модификаторов первой группы является “Автопреобразователь-1 ржавчины” – продукт взаимодействия фосфорной кислоты с хроматом натрия и окисью цинка. По внешнему виду это прозрамная оранжевая или оранжево-зеленая жидкость. Автопреобразователь негорюч и малотоксичен, а его расход 100-130 г/м2.

Перед нанесением преобразователя поверхность металла необходимо хорошо очистить от грязи и металлической щеткой соскрести рыхлую ржавчину.

Затем обезжирить уайт-спи-ритом, высушить и через 20-30 мин жесткой кистью, тщательно растушевывая и втирая в поверхность, нанести преобразователь ржавчины.

Через сутки поверхность нужно слегка увлажнить водой, а через 4—5 сут нанести грунтовку ГФ-021 или ФЛ-03К.

Для преобразования ржавчины и перевода ее в неактивное состояние предназначен “Нейтрализатор ржавчины ВСН-1”, выпускаемый в виде водного раствора. Наносят его также, как и “Автопреобразователь-1 ржавчины”.

Примерно через 30 мин поверхность приобретает беловато-серый цвет, после чего ее нужно промыть водой, высушить и загрунтовать.

Препарат эффективно преобразует ржавчину при 10-30 ° С и сохраняет свои свойства после замораживания и размораживания.

“Автопреобразователь ржавчины лигнмнный” – смесь, состоящая из аминолигнина, фосфорной кислоты, эмульгатора, коагулятора и воды. По внешнему виду — маслянистая жидкая паста темно-коричневого цвета с запахом фруктовой эссенции. Негорюч и малотоксичен.

Обладает тиксотропными свойствами, легко удерживается на вертикальных и потолочных поверхностях. Расход 120-150 г/мг. Преобразует слой ржавчины толщиной до 150 мкм. При комнатной температуре процесс преобразования ржавчины проходит за 16-20 ч, при 100-110 С за 15-20 мин.

Допускается нанесение преобразователя на влажную поверхность. Его можно наносить кистью, валиком или краскораспылителем. После обработки преобразователем поверхность металла может быть от серого до темно-кортневого цвета (в зависимости от марки стали и характера ржавчины) без вздутий и шелушения.

Это средство преобразует ржавчину до водонерастворимых химически стойких соединений, прочно связанных с поверхностью металла.

Для стабилизации ржавчины и переведения ее в неактивное состояние предназначен “Модификатор ржавчины П-1Т”. Он представляет собой раствор следующего состава (в % по массе): ортофосфорная кислота (30%-ная) – 10Н5; танин 8-НО; бутиловый спирт 5-НО; этиловый спирт 9Н0; ацетон 9-НО; хромат цинка 9-10; углекислый барий<\p>

Источник: http://stroy-technics.ru/article/udalenie-produktov-korrozii-i-obezzhirivanie

Фосфатирование металла перед покраской: особенности процесса

Подготовка металлических конструкций под покраску – важнейшая процедура, от качества выполнения которой зависит долговечность будущего покрытия. Поверхность необходимо не только очистить от грязи, но и на завершающем этапе обезжирить металл перед покраской.

Этапы выполнения работ

Подготовка металла – не такая уж и простой процесс, как может показаться на первый взгляд. Работа разделяется на несколько этапов, важнейшими из которых являются:

  • удаление ржавчины и старой краски с поверхности;
  • выполнение фосфатирования и обезжиривания.

Подготовка к покраске изделий из металла может выполняться по различным технологиям, но в первую очередь с них следует удалить ржавчину и остатки предыдущего окрасочного слоя.

Снятие краски и ржавчины

Очистка металла от коррозии и старого слоя краски может осуществляться тремя способами:

  • химическим;
  • механическим;
  • термическим.

Механический способ

Такой метод, считающийся наиболее эффективным, подразумевает удаление ржавчины и краски вручную либо при помощи механизированного инструмента. Обработка может выполняться:

  • проволочными щетками;
  • шлифовальными дисками;
  • посредством пескоструйного агрегата;
  • гидроабразивным способом (выполняется только на промышленных предприятиях).

Химическая обработка

Обработка химическим способом основана на воздействии на ржавчину химических веществ, распыляющихся на поверхность либо наносящихся кистью.

Удаляющие ржавчину составы делятся на два типа:

Недостатком смываемых средств является вероятность появления на металле новых очагов коррозии, потому после обработки поверхность должна быть немедленно просушена и обработана антикоррозийными составами.

При обработке ржавчины несмываемыми составами в результате химической реакции на поверхности металла образуется своеобразный слой грунтовки, который нельзя смывать водой.

Обработку металлоконструкций чаще всего выполняют:

  • раствором серной либо соляной кислоты (5%-й) с добавлением ингибитора коррозии;
  • ортофосфорной кислотой (15-30%-я эссенция), преобразующей ржавчину в защитное покрытие;
  • смесью 50 гр. оксипропионовой кислоты на 100 мл вазелинового масла, под воздействием которой ржавчина превращается в соль и легко счищается с поверхности тряпкой.

Термический способ

Удаление краски с металлических поверхностей термическим методом подразумевает использование паяльной лампы. Металл подвергается нагреванию до постепенного отслаивания лакокрасочного покрытия, легко удаляющегося шпателем либо металлической щеткой.

Главное достоинство такого способа – значительная экономия времени, а основной недостаток – пожароопасность и некоторые ограничения по типам поверхностей. Обрабатывать листовой и оцинкованный материал, чугун таким методом нельзя – поверхность при этом деформируется, нарушается целостность конструкций.

Обезжиривание металла

Обезжиривание конструкций выполняется для обеспечения хорошего слипания металла с лакокрасочным составом и грунтовкой.

Для обезжиривания металла перед покраской в принципе можно применять любые составы, удаляющие органические вещества и жиры. Но все же, лучше использовать комплексные соединения, преобразующие ржавчину в полезный слой и предотвращающие ее появление в будущем:

  • уайтспирит;
  • номерные нитрорастворители;
  • обезжириватель на сложных спиртах;
  • керосин.

В качестве средства для обезжиривания не рекомендуется использовать бензин, так как в результате воздействия его на поверхность появляется невидимая глазу масляная пленка, ухудшающая адгезию с краской.

Обезжиривание необходимо выполнять в хорошо вентилируемых помещениях с постоянной циркуляцией воздуха, так как пары большинства использующихся химических веществ очень токсичны. Во избежание отравления рекомендуется надеть респиратор, работать в резиновых перчатках и защитных очках – при попадании в глаза любого растворителя не избежать химического ожога слизистой.

Фосфатирование металлических поверхностей

Фосфатирование – это процесс покрытия поверхностей черных либо цветных металлов тонкой пленкой, защищающей ее от образования ржавчины и улучшающей адгезию с окрасочным составом.

Применение такой технологии позволяет значительно улучшить устойчивость к износу контактирующих деталей в узлах трения. Метод может быть реализован практически для всех сплавов, кроме высоколегированной стали – на ней появляется фосфатная пленка недостаточно высокого качества.

Читайте также:  Автобусные остановки советской эпохи

Для чего выполняется фосфатирование?

Фосфатирование металла перед покраской выполняется в целях обеспечения поверхности надежной защитой от коррозионных процессов в местах, очищенных от старой краски и ржавчины механическим способом. Перед нанесением защитного слоя металлические конструкции или изделия необходимо тщательно очистить от пыли и грязи, а также обезжирить.

Такой способ защиты конструкций из металла допускает их эксплуатацию в условиях:

  • воздействия автомобильных масел и топлива;
  • в электроустановках до 1 кВ;
  • высокой влажности;
  • в средах с органическими растворителями;
  • нахождения под лакокрасочным покрытием.

Образующаяся пленка способна надежно защитить металл в указанных выше условиях, но быстро разрушается в агрессивных кислотной и щелочной средах. Потому перед выполнением фосфатирования нужно определить состав среды, в которой будет эксплуатироваться металлическое изделие.

Способы фосфатирования

Образование фосфатной защитной пленки на поверхности металла получается несколькими способами, возможность и целесообразность реализации которых зависит от размеров конструкции и области ее применения.

Чаще всего используются такие методы:

  • обработка поверхности препаратом «Мажеф», допускающаяся даже для низкоуглеродистой стали, в результате образуется качественная грунтовка с антикоррозийными свойствами;
  • использование фосфорной кислоты или «холодное фосфатирование», при котором толщина защиты составляет не более 5 мкм;
  • применение монофосфата цинка, использующегося преимущественно в машиностроительной и электроэнергетической отраслях;
  • обработка фосфатирующей пастой.

Для подготовки металла под покраску необходимо выполнять ряд обязательных процедур, без которых невозможно качественное окрашивание и, соответственно, продолжительная эксплуатация металлических конструкций.

Вам также может быть интересно узнать, какая краска для забора металлического подходит лучше всего в вашем случае. Об этом читайте в статье о покраске металлических ограждений.

Источник: https://kraskaton.ru/stroyka-remont/rabota/fosfatirovanie-metalla-pered-pokraskoj/

Зачистка старого ЛКП, ржавчины, антигравия, сварных швов

В прошлой статье мы говорили о начальной стадии подготовки поверхности к окраске — ее мойке и обезжиривании. Теперь наша виртуальная поверхность готова к следующему этапу — удалению пришедшего в негодность старого ЛКП, очагов коррозии и прочих дефектов.

О преобразователях ржавчины и смывках краски

Для удаления ржавчины и очистки старого ЛКП до металла западные фирмы рекомендуют применять исключительно механические средства — шлифмашинки, «пескоструйку», щетки.

И никто из ведущих западных производителей ЛКМ не выпускает и не рекомендует использовать преобразователи или нейтрализаторы ржавчины.

Конечно, отчасти это объясняется тем, что подгнившие детали там вообще не принято ремонтировать, но основной аргумент заключается в том, что остатки кислоты, которая входит в состав подобных средств, могут спровоцировать коррозию потом, после окраски.

 Так что использовать для обработки преобразователь ржавчины, что ни говори, заманчиво (особенно, если ржавчина повсюду), но рискованно.

А вот смывка старой краски в арсенале некоторых фирм есть — она размягчает и вспучивает краску, после чего ее снимают шпателем или шлифмашинкой. Однако использование таких смывок — затея тоже довольно сомнительная.

 Агрессивный химический состав этих реактивов не позволяет с уверенностью сказать о том, что нам удастся полностью удалить их после применения. А значит нет никаких гарантий, что наше новое покрытие не получит таким образом совсем нежелательных дефектов — химия есть химия.

Да и если и применяется смывка, то наносить ее нужно только на всю поверхность детали (иначе на границах краска потом все равно набухает), что при удалении небольших дефектов, скажем, небольшой вмятины, нецелесообразно.

Таким образом наиболее эффективным на сегодняшний день методом очистки дефектов ЛКП до металла является механическая обработка, то есть шлифование. Современные шлифовальные материалы и технологии позволяют сделать эту работу вовсе не проигрывая во времени химическим методам, при этом совершенно без риска.

Дефекты, поджидающие нас на этом этапе, можно условно разделить на следующие виды:

  • незначительные дефекты (царапины, сколы, небольшие вмятины),
  • крупные повреждения (детали после рихтовки, толстые слои старых ремонтных покрытий, шпатлевочных масс, грунтов),
  • очаги коррозии,
  • сварные швы,
  • антигравийное покрытие,
  • липкие ленты.

Давайте разберемся, какие инструменты и материалы будут наиболее эффективными в каждом конкретном случае.

Зачистка незначительных дефектов

Для удаления незначительных дефектов на лакокрасочном покрытии подойдет эксцентриковая ротационно-вибрационная машинка с ходом эксцентрика 5-8 мм, жесткая тарелка (например, диаметром 115 мм) и шлифовальные круги градации P80 и P150 (первые применяются в основной зоне дефекта, вторые — на периферийных участках). Скорость работы — до 10 000 об./мин.

В качестве примера можно привести двуручную пневматическую машинку Rodcraft 7665 или электрическую Festool WTS 150/7,  шлифовальную тарелку с 7 отверстиями Sia и шлифовальную бумагу в кругах siadrive siafast (см. таблицу в конце статьи).

Профессиональная эксцентриковая шлифовальная машинка Festool WTS 150/7 (ход эксцентрика 7 мм)

Так же эффективно справляются с поставленной задачей специальные круги SCM. Причем не только при удалении стандартных слоев эмалей с небольшими дефектами, но и при удалении толстых слоев ЛКП — см. следующий подраздел.

Удаление толстых слоев ЛКМ

Неизменным инструментом при работе на поверхностях с крупными повреждениями (например, после рихтовки), а также на поверхностях, которые ранее подвергались ремонту и имеют на себе толстые слои старых ремонтных материалов, является угловая зачистная машинка, именуемая в народе «болгаркой».

Например, пневмоболгарка Rodcraft 7150 или электрическая ротационная шлифовальная машинка Festool RAS 115.04 E.

Зачистка машинкой Festool RAS 115.04 E

Из материалов для данного вида работ наиболее часто используются фибровые круги: обычные или с креплением «на липучке». У фирмы Sia это круги siamet и siatop соответственно. Это очень агрессивные материалы (градациями P036-P080), так что они без труда справятся с поставленной задачей.

Но при этом следует помнить, что пользоваться ими нужно осторожно, чтобы не оставить на поверхности металла грубых рисок.

После работы грубыми кругами обязательно перешлифовывайте поверхность более мелкими абразивными материалами с учетом шагов шлифования (разница в зерне должна быть не более 100 единиц).

Зачистной фибровый круг siamet

Зачистные фибровые круги на липучке siatop

Рекомендуемая скорость работы кругами siamet — 10000 об./мин. Для кругов siatop скорость должна быть ограничена 8000 об./мин., так как на более высоких оборотах «липучка» на краях кругов может подгорать.

Зачистной круг на основе синтетических волокон SCM

Также отлично справляются с удалением толстых слоев ЛКМ специальные зачистные круги на основе синтетических волокон SCM.

Благодаря своей уникальной структуре, этот материал почти не забивается частицами ЛКМ и практически не оставляет следов на металле, что позволяет избежать перешлифовки поверхности более мелкими абразивами во избежание просадки нанесенных впоследствии слоев в грубую риску. Как говорилось выше, эти круги отлично подходят и для устранения мелких дефектов.

Зернистость этих материалов обозначается уже буквой «K». У них есть три градации: K060 (грубая), K100 (средняя) и K150 (мелкая). Для крепления этих кругов подходит та же тарелка, что и для вышеупомянутых фибровых кругов на липучке. Скорость работы — не более 8 5000 об./мин.

Безусловно хороши для удаления старого ЛКП и зачистные лепестковые диски. У Sia это диски siaflap. Благодаря тому, что абразивные лепестки расположены веерным способом, такие диски равномерно изнашиваются и не забиваются. Они служат в 6 и более раз дольше, чем обычные круги! Cкорость работы 115-миллиметровыми дисками — до 13000 об./мин.

Зачистной лепестковый диск siaflap

Удаление ржавчины

Для быстрой и эффективной борьбы с очагами коррозии также следует воспользоваться зачистной машинкой.

Из материалов лучше всего подойдут описанные выше фибровые и лепестковые круги — они обеспечат быстрое и эффективное удаление ржавчины на больших поверхностях. Если после работы этими кругами на поверхности остаются поры ржавчины, дополнительно воспользуйтесь дисками SCM, которые без проблем достанут ржавчину из небольших углублений и пор.

Однако зачастую мы имеем дело с ржавчиной, которая находится в достаточно сложных для обработки, труднодоступных местах (на порогах, кромках, в углублениях).

В таких случаях наиболее удобной будет осевая шлифовальная машинка, например Rodcraft 7040 или маленькая углошлифовальная машинка Rodcraft 7100.

Там где для болгарки места слишком мало, для таких машинок может оказаться вполне достаточно.

Осевая шлифовальная машинка Rodcraft 7040

В тандеме с этими машинками используются специальные шлифовальные валики (spiraband) и маленькие зачистные круги (siafix). Скорость работы валиками — до 23000 об./мин., кругами siafix — от 15000 до 30000 об./мин. для 50-миллиметровых дисков, и 13000-27000 об./мин. для дисков диаметром 75 мм.

Шлифовальные валики

Как итог, маленькие размеры машинки и шлифовальных материалов обеспечивают отличный доступ к местам ремонта, а высокая скорость работ — быстрое и эффективное удаление ржавчины.

В случае обработки кромок дверей, краев капота или крышки багажника, различных углублений и «узких» мест на кузове автомобиля также можно воспользоваться… обычным отрезным диском! Понятно, что его основное предназначение — это резка металла, однако при аккуратном и осторожном обращении отрезной круг с успехом можно применять для очень быстрого и агрессивного удаления очагов ржавчины, прежде всего — в труднодоступных местах.

Удаление антигравия

Антигравийные покрытия — «головная боль» многих кузовщиков, так как большинство шлифовальных материалов быстро забиваются частицами этого покрытия из синтетического каучука.

Однако на рынке все-таки есть материалы, которые помогут справиться с антигравием — специальные зачистные диски на основе объемных полимерных волокон. У фирмы Sia они называются siastrip и имеют градацию K040.

У компании 3M это диски Clean & Strip.

Грубая структура таких дисков обеспечивает беспроблемное удаление старых антигравийных покрытий, при этом они почти не забиваются и меньше нагреваются. В эффективности и износойтойкости такие круги превосходят даже металлические щетки, а их размеры, форма и эластичность позволяют работать в самых неудобных и труднодоступных местах.

Зачистной круг на основе объемных полимерных волокон siastrip

Скорость работы дисками siastrip не должна превышать 6000 об./мин. Оптимально — 3500. Работа ведется торцевой частью круга.

У этих кругов есть и разновидность — круги sia-powerstrip. Рабочий материал на эти диски нанесен по окружности, что позволяет работать быстрее и на больших площадях. Рекомендуемая скорость работ — 6000 об./мин.

Зачистной круг на основе синтетических волокон sia-powerstrip

Зачистка сварных швов

Места сварки обязательно должны быть обработаны, чтобы:

  • снять окалину, так как ни один лакокрасочный материал не имеет адгезии к ней;
  • минимизировать дальнейшие шпатлевочные работы.

Для зачистки сварных швов подойдут многие уже описанные сегодня материалы: фибровые круги siamet и siatop, валики spiraband, лепестковые диски siaflap, а также круги siafix.

Как правило, обрабатываемая площадь в этом случае небольшая, поэтому наиболее удобными будут и небольшие диски siafix (диаметрами 50 и 75 мм).

Зачистные диски siafix и обработка швов с их помощью

При обработке сварных швов особое внимание нужно уделить усилию, прилагаемому к «болгарке», ведь если металл пережечь, он снова покроется окалиной.

Удаление липких лент

Еще одна проблема с которой сталкиваются ремонтники — удаление клейких лент с поверхности (тех, на которые крепятся молдинги и эмблемы).

Круг для снятия клейких лент siarad

Если раньше их удаляли преимущественно ручным соскабливанием, тратя на это уйму времени, нервов и не совсем цензурных выражений, то сейчас их можно быстро и качественно устранить при помощи специальных резиновых кругов в считанные минуты.

Желательно работать на оборотах 2000-4000. Слишком высокие обороты и сильное вдавливание шлифмашинки могут привести к перегреву ЛКП, так что будьте внимательны.

• Зачистка осуществляется уверенными возвратно-поступательными движениями с умеренным прижимом к поверхности. Между давлением на круг и скоростью обработки существует прямая зависимость: чем сильнее прижим, тем выше скорость обработки. Однако при этом и сам круг будет быстрее изнашиваться. Поэтому не надавливайте на машинку слишком сильно.

• Для эффективной зачистки держите шлифмашинку под небольшим углом (15-20˚ ).

• Границы перехода металла в старое ЛКП сглаживайте до максимально плавного состояния.

• Помните, что инструмент следуют включать и выключать над обрабатываемой деталью. Машинку сначала приложите к поверхности, потом включите.

• Не работайте торцом — это может привести к преждевременному износу или повреждению круга.

• Соблюдайте рекомендованные обороты для того или иного круга. При превышении рекомендованной скорости вращения круг будет быстро изнашиваться и терять свои абразивные свойства.

• Для обработки ЛКП перед последующим шпатлеванием применяйте круги градации P80 в основной зоне дефекта и P150 в периферийной.

• При шлифовании поверхностей, которые ранее уже подвергались ремонту и имеют на себе толстые слои шпатлевочных масс, главной задачей будет добраться до надежного слоя покрытия.

Ведь в результате повреждения и деформации элемента, эластичный металл мог потерять сцепление с неэластичной шпатлевкой.

Видимых признаков этого иногда может и не прослеживаться, однако после того, как начинаешь шлифовать, вся эта подноготная (трещины, отслоения шпатлевки) обнаруживается.

Вот наша поверхность уже сияет металлическим блеском и обработана шкуркой для лучшей адгезии последующих слоев. Самое время приступать к шпатлеванию повреждений. Об этом — в следующий раз.

Бонусы

Зачистка небольших и значительных повреждений

Таблица применяемых материалов и оборудования

Источник: https://artmalyar.ru/podgotovka/udalenie-starogo-lkp.html

Ссылка на основную публикацию